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Preface

This is the first annual report for ETL contract DACA76-84-C-0004. Our

activities on the project principally involved building an experimental facility for

performing research in vision for autonomous navigation of ground vehicles and

developing a computational framework for constructing visual navigation sys-

tems.
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1. Introduction and Executive Summary

This is the annual report for ETL contract DACA76-84-C-0004 "Vision algo-

rithms for autonomous navigation." This was the first contract year of a three

year contract, and our activities principally involved building an experimental

facility for performing research in vision for autonomous navigation of ground

vehicles and developing a computational framework for constructing visual navi-

gation systems.

In Section 2 of this report we describe the facility that we have constructed.

The facility includes a variety of computers, robots and sensors that should allow

us to develop, in the laboratory, algorithms for visual navigation that can be

transferred to the Martin Marietta Corporation for integration onto the Auto-

nomous Land Vehicle. The computers that we have acquired include a VAX

11/785 for general program development. The VAX was chosen because of previ-

ous experience that the Laboratory has had with the machine, and the large

amount of vision software developed in the Laboratory to run on this machine.

The Laboratory also acquired a VICOM image processing system, in exactly the

same configuration as the system that will be used to drive the vehicle at Martin

Marietta. The VICOM is a MC 68000 based system with special purpose

hardware for image convolutions, image arithmetic and table look-ups to approxi-

mate arbitrary nonlinear image operations. Todd Kushner, a research scientist

supported by the project, has extensive VICOM experience and during the first

year of the program provided Martin Marietta with significant technical support

in the usc of the machine. The Laboratory had, previous to this project, an



American Robot Merlin robot arm which is being used in this project to simulate

the ALV. We have purchased a lightweight solid state black and white TV cam-

era and mounted it on the robot arm along with specially designed position

encoders that allow us to control the height and the attitude of the camera with

respect to the ALV terrain board. The terrain board that we designed and con-

structed, has nontrivial topography (which allows us to test various road recon-

struction algorithms) and has a small set of roads painted on it. We have found

this facility to be extremely valuable in designing our visual navigation system.

To augment the data that can be acquired with the robot arm, we have assisted

Martin Marietta in collecting data sets of road images from their test sites. It is

on these images that we have designed and tested our low level vision algorithms.

In Section 3 we present the details of our proposed framework for visual

navigation, along with some initial experimental results. This system that we

have designed is a highly modular one, with components for image processing,

road reconstruction, sensor control and path planning. The design of the system

is motivated by a desire to effectively allocate scarce computational resources to

the road recovery task. Thus, the system operates by focusing its attention on

small windows of the road images that are predicted to contain road features

needed both to verify the system's current model of the structure of the road on

which it is traveling, as well as to extend that model in the direction of travel.

These windows are chosen on the basis of a three dimensional road model that is

incrementally constructed as the vehicle moves through the world. This world

model, in conjunction with estimates of vehicle motion (available on the ALV
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from its internal navigation system and on the robot from its controller), together

with the ability to pan and tilt the image sensor, allow us to control the sensor

and its processing to efficiently track the road through the world. One of the

most important components of our vision system is the three dimensional road

reconstruction module. In the absence of either stereo or motion information

(which could not be obtained accurately enough on the actual ALV), one must

resort to monocular methods for road reconstruction. The simplest of these

methods, a flat earth reconstruction, yields accurate road models only to short

distances in front of the vehicle. We have designed a sophisticated monocular

road inverse perspective algorithm that, based on simple and natural assumptions

about road geometry, is able to reconstruct the three dimensional road including

road banks. All of these modules are described in detail in Section 3. inally, Sec-

tion 4 contains a list of reports generated during the year.

2. Facility

The Computer Vision Laboratory has been working closely with Martin

Marietta Corp., Denver Colorado, the integrating contractor on DARPA's auto-

nomous land vehicle program. Maryland's role in this relationship is to develop

basic algorithms for visual navigation and then to transfer these algorithms to

Martin for possible use in demonstrations of the Autonomous Land Vehicle

(ALV). In order to support this technology transfer, we have developed an exper-

imental facility at Maryland composed of computer systems, a robot arm carrying

TV and other sensors, and a terrain board. These are described briefly below.
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During the first year of the program, Martin Marietta plans to navigate the

ALV with an onboard VICOM image processing computer. This is a Motoral

68000 based system with special purpose hardware for image arithmetic, convolu-

tion, and table lookups. Maryland acquired a VICOM system identical in

configuration to the one that will reside on the ALV. Furthermore, Maryland

hired Dr. Todd Kushner as a senior programmer on the project; Dr. Kushner

worked for VICOM and has unique expertise on much of the image processing

software that runs on the VICOM. During the first year of the contract he pro-

vided valuable assistance to Martin Marietta in identifying both software and

hardware problems that they encountered with the VICOM system.

Maryland also acquired a VAX 11/785 to support algorithm development in

the laboratory. This system is similar to the Laboratory's existing VAX 11/785

and allows us to dedicate a powerful computer to the development of algorithms

for visual navigation.

Early in the program, Maryland had considered building a small autonomous

vehicle for experimentation. Based on both a cost analysis and the need for spe-

cial enginecring expertise for both designing and maintaining such a vehicle, we

decided instead to develop an experimental facility in the Laboratory using an

existing robot arm. This arm was manufactured by American Robot, has a large

workspace and can carry quite substantial payloads. The robot currently carries

a lightweight black and white solid state SONY television camera in a mount

fitted with three position encoders. These position encoders allow us to control

both the height and the attitude of the camera with respect to a terrain board.



We have constructed a terrain board with modest topography (mostly flat,

but with a few small hills). On this board we painted a black road network

against a green background. The road network consists of one oval road, with a

straight road along the major axis of the oval. The straight road is wider than

the oval. The TV camera on the robot arm first transmits imagery to the

VICOM, and the VICOM can either process the imagery (to test code for delivery

to Martin Marietta) or can then transmit the imagery to the VAX for processing

by our experimental visual navigation system.

We have found this facility to be extremely useful in developing vision algo-

rithms and our navigation system. While the imagery obtained from the terrain

board is quite different quantitatively from the imagery obtained by the color

sensor on the ALV, we can still test major components of our vision system-

specifically the focus of attention mechanism and the road inverse perspective

modules-completely with the terrain board. The image processing algorithms

are developed on the more difficult images from the Martin Marietta test site,

and then used on the simpler (although still non-trivial) images obtained on the

terrain board.

3. The Maryland Visual Navigation System

Our objective is to endow a mobile robot vehicle with Lhe intelligence

required to sense and perceive that part of its surroundings necessary to support

navigational tasks. The vehicle maintains continuous motion by alternatively

"looking ahead" and then "driving blind" for a short distance before taking
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another view. While moving blindly, the accepted monocular image is processed

to extract features which are then interpreted in three dimensions by a combina-

tion - "'shape from contour" and geometric reasoning. This provides the data

required to form an object-centered representation in the form of a local map.

This map is used both for navigation and for focusing attention on selected parts

of the visual field as the vehicle continues to move, accepting new images for pro-

cessing. Though our domain of application has been the visual navigation of

roadways, we have attempted to derive some useful principles relevant to visual

navigation systems in general.

We have found it useful to distinguish between two different modes of visual

processing, and our system can switch between these modes when necessary.

Generally, the system begins a task in the bootstrap mode which requires process-

ing an entire scene, picking out the objects of interest such as roads or land-

marks. Sometimes this mode of processing can be avoided if the system is pro-

vided with detailed data concerning the locations of such objects, either from a

map or from the analysis of previous sensed data. Once objects of interest are

identified, the system switches to a prediction-verification mode called feed-

forward in which the location of an object as seen from a new vehicle position is

estimated, thus focusing attention on a small part of the visual field. This feed-

forward capability emerges from the interaction between vehicle dead-reckoning,

3-D world modeling and vision. It has been particularly useful for road following,

leading to a computational saving of a factor of ten. However, it is a useful prin-

ciple in general, and will be applicable to obstacle avoidance as well.



We have implemented our system as a set of concurrent modules running on

a time-sbnring system (Berkeley UNIX 4.3) with the modules communicating

through UNIX system "sockets."

3.1. System Architecture

We have developed and implemented the modular system architecture shown

in Figure 1. The architecture shown in Figure 1 consists of a Vision system along

with modules for Planning, Navigating and Piloting. The Vision system is

decomposed into modules which support low, intermediate and high-level vision.

The vision system operates in two modes, bootstrap and feed-forward. This

distinction is possible because the system can exploit a "focus of attention" on a

portion of the visual field deemed important. The bootstrap mode is employed

when the vision system must establish its first view of an object, i.e., it must find

it in the visual field. This often requires processing the entire image. (If vehicle

position is accurately known and detailed map data is provided, the system can

bypass the bootstrap mode and use the map to focus attention.) Once an object

is localized, the vision system can predict (to some accuracy) the location of that

object in the following view and so restrict future processing to a small portion of

the visual field. The system is then operating in the feed-forward mode. This

kind of processing, in which a focus of attention is maintained, is particularly

important when computational resources are limited, which is really always the

case. In fact, it is via the feed-forward mode of operation that the vehicle can

achieve continuous movement over an obstacle-free road. By accepting an image
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for feed-forward processing, the vehicle can move "blindly" while deriving a new

3-D model of the road from the image. During this travel, the vehicle is dead-

reckoning its position relative to the previously derived 3-D model. Depending on

the accuracy of the dead-reckoning system, one can extend the distance of blind

travel and so achieve greater vehicle speeds. However, this will not be appropri-

ate if obstacles can move into the vehicle's path during the blind travel time.

Alternatively, fast, dedicated hardware can be utilized to speed up the computa-

tions while keeping the blind travel distance to a minimum.

Wc shall describe the system architecture in Figure 1 by first explaining the

responsibilities of the individual modules in terms of how they transform the data

or representations across the interfaces. Then we describe the flow of control

through the system in support of the road following task.

The vision modules in our system support low-level (Image Processing),

intermediate-level (Geometry) and high-level (Knowledge-Based) vision. These

modules are coordinated by a Vision Executive module which also has access to

3-D Representation, Scene Prediction and Sensor Control modules. The Vision

Executive also supports interfaces to the Planner and Navigator modules. The

Pilot module communicates only with the Navigator. These modules' functional

capabilities are listed inside each block in the diagram, and are described in detail

in the next subsection.

The vision system as a whole is responsible for perceiving objects of interest

(e.g., roads and landmarks) and representing them in an "object centered" refer-

ence frame. The Image Processing module is responsible for extracting symbolic
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representations from the individual images. These image domain symbolics

correspond to significant events in the signal data; they are general features

which describe images (e.g., edges, lines, blobs). The transformation from TV

signals to symbols represents an enormous reduction in data. Extraction of sym-

bols can be performed either on the entire image, or within a specified window.

The module we call the Visual Knowledge Base has several responsibilities.

Given the image domain symbolics extracted by the Image Processing module,

the Visual Knowledge Base module tries to establish significant groupings of these

symbols (e.g., pencils of lines). These groupings are global, corresponding to spa-

tial organizations over large parts of the image, in contrast to the symbols them-

selves which are typically local groupings of events. This grouping process will

then discard those symbols which are not found to belong to any group. The

Visual Knowledge Base is also responsible for establishing meaningful groupings

from 3-D representations provided by the Geometry module. Given the 3-D data,

the Visual Knowledge Base module tries to recognize specific kinds of objects

(e.g., roads), and so label important parts of the scene. The Geometry module is

responsible for 3-D shape recovery, converting the grouped symbolics (obtained

earlier) into surface patches described in a viewer centered reference frame. The

Vision Executive is the heart of the vision system; it maintains the "flow of con-

trol" through this part of the system, trying to meet the "attentive goals" (such

as find road or find landmark or find obstacles) provided by the Planner and

Navigator. It is this Executive which triggers the mode of operation (bootstrap

or feed-forward). The Vision Executive is aided by several additional sub-
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modules which are also shown in Figure 1. Once a 3-D model of the scene has

been established in the viewer centered coordinate system, it is converted to an

object centered representation by the 3-D Representation module. This represen-

tation is more compact than the viewer centered description, and corresponds to

a world model organized around the static components of the scene which do, in

fact, dominate the scene. In the case of roads, this is the representation passed

to the Navigator module for planning a path. This 3-D representation is also

used by the Scene Predictor to focus attention on small areas of the visual field in

which important objects are located, even after the vehicle has traveled blind; it

is the foundation upon which the feed-forward mode operates. Finally, the

Vision Executive can control the pointing of the camera via a Sensor Control

module. Thus, in seeking to find a landmark or road, for example, the Executive

establishes the visual field.

Three additional modules comprise our architecture as it currently stands.

A Planner module is responsible for establishing the overall goals of the system

and assigning priorities to these goals. As we are concerned with navigation,

these goals are typically location goals, either in a map, or relative to something

like a landmark located in a map. For road following a goal may be "move to

point N on the road map." It is also appropriate that the Planner be responsible

for overall resource allocation as this is where the "time sensitivity" of the sys-

tem resides. Hence, priorities can be established and altered when deemed neces-

sary. The Navigator module is a special purpose planning module. It is responsi-

ble for generalized path planning. The Navigator must also track the position of
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the vehicle through the 3-D representation as it moves blindly, using "travel"

data from the Pilot. Once the Navigator establishes a particular path for some

short distance, it passes the path to the Pilot module which interprets this path

into steering and motion commands for the vehicle. The Pilot is also responsible

for monitoring the dead reckoning (and inertial navigation) unit aboard the vehi-

cle. It should convert wheel shaft encoder readings and gyroscope headings into

directional travel since the last time "travel" was requested by the Navigator.

3.2. System Modules

We now consider each module separately.

3.2.1. Image Processing

We have developed algorithms for the extraction of dominant linear features

from entire (gray level) images as well as gray and color segmentation routines.

These analyses provide independent representations of the information contained

in the images in the form of boundary based and region based descriptions,

respectively. These routines are relevant to the bootstrap mode of processing

described earlier. Related versions were also developed to support the feed-

forward mode. The capabilities we have already installed combine low-level

operations with certain grouping procedures to derive particular symbolic descrip-

tors. Thus, our linear feature detector relies on the grouping of pixels with simi-

lar gradient orientation, yielding a linear feature with global support (and poor

localization) in the bootstrap mode and one with local support (and good localiza-

tion) in the feed-forward mode. The segmentation procedures are based on edge-
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preserving smoothing followed by a connected-components analysis. The color

version of the segmentation procedure is far less sensitive to parameters than is

the gray version. (It also provides the additional measure of "color" for each seg-

ment.) Linear feature extraction is completely automatic. Since the knowledge-

based reasoning module in our system cannot currently fuse multiple sources of

data (such as both linear features and regions), we utilize only the linear features

when running the entire system.

3.2.2. Visual Knowledge Base

This module implements two separate vision tasks-seeking significant group-

ings of symbols derived from an image and checking consistency of 3-D shape

recovery with generic models of objects (e.g., roads). Many types of symbolic

groupings can be considered in general, though for purposes of road following we

concentrated on the grouping of linear features into pencils of lines.

Pencils are determined by spatial clustering of intersections between pairs of

lines in order to suggest a vanishing point. A sequence of vanishing points are

adopted when grouping lines from the bottom of an image to the top

(corresponding to "near to far" in the world). In the context of road following,

these groupings represent hypotheses about road boundaries and markings, and

the road geometry itself when more than one grouping is found (for example

turns and changes in ground slope).

Once pencils have been grouped and assigned a 3-D interpretation by the

Geometry module (see below), the Knowledge Base module attempts to reason
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about the consistency of the successive surface patches that comprise the

hypothetical road. Changes in surface slope and 3-D symmetries of the road are

typical attributes that are considered. If the surface patches and corresponding

road segments satisfy the constraints, the interpretation of a "road and its parts"

are assigned and associated with a scene model.

3.2.3. Geometry

The Geometry module converts the grouped symbolics in the image domain

to a viewer centered 3-D description of objects in the scene. A variety of "shape

from" techniques have been suggested for accomplishing this in general (as listed

in the diagram> leading to a representation termed the "2.5-D sketch". When

several methods are employed, their results must be combined in a kind of

"integrated 2.5-D sketch." Currently, our system utilizes several methods for

recovering shape from monocular imagery; these are essentially "shape from con-

tour." The first method employs a flat earth assumption, and simply involves

backprojecting the images of the road boundary on the ground plane (determined

from the vehicle's land navigation system).

Our second method of shape recovery is really model driven. We can invert

the perspective transformation of the imaging process if we adopt the following

three (road) model-based assumptions:

1. Pencils in the image domain correspond to planar parallels in the world.

2. Continuity in the image domain implies continuity in the world.
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3. The camera sits above the first visible ground plane (at the bottom of the

image).

Our 3-D reconstruction will then characterize a road of constant width, with

turns and changes in slope and bank. The reconstruction process amounts to an

integration out from beneath the vehicle into the distance, along local parallels

over topography modeled as a sequence of planar surface patches. A simplified

version of the method was used by Martin Marietta in their May 1985 demons-

tration.

3.2.4. Vision Executive

This module does not really perform any computations as yet. It maintains

the flow of control through the system in order to exhibit a behavior, such as

road following. As the contents of the Knowledge Base are expanded to incor-

porate other object models, the Vision Executive will have to make decisions

about what scene features to search for, which sensors to use in those searches,

etc. Once the system modules are mapped to individual nodes of a multiproces-

sor such as the Butterfly, the Vision Executive will be required to buffer messages

between modules as the computations are asynchronous.

3.2.5. 3-D Representation

This module converts the 3-D viewer centered representation of the road

scene into an object-centered description. The description is in the form of a file

which lists a set of road attributes at each "roadmark" set down. Roadmarks are

placed (by this module) along the centerline of the reconstructed road model, at
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the beginning of each new planar patch.

3.2.6. Predictor

This module is used to focus the attention of the system on a small part of

the visual field. Windows in the field of view are determined inside of which the

near part of the road boundaries are located, following the vehicle's blind travel

through the 3-D representation created from an earlier image. This is accom-

plished by essentially transforming the 3-D data used to create the most recent

representation according to a rigid body translation and rotation associated with

the vehicle's motion (as is familiar in computer graphics). The components of

travel used in constructing this transformation are obtained from the dead

reckoning (and inertial navigation) system aboard the vehicle. Once the 3-D

representation is transformed accordingly, we solve for the intersection of the

road boundaries with the periphery of the field of view. Windows of @5 sup

{roman o} times 5 sup {roman o}@ are then placed over these points at the

lower part of the visual field.

3.2.7. Sensor Control

This module is essentially an interface to the device driver associated with

the pan and tilt mechanism of the camera. Computations consist of conversions

between relative and absolute pointing angles.
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3.2.8. Navigator

This module must provide computational capabilities in support of general-

ized path planning. Thus, it must be able to establish vehicle position from

known landmarks sighted, generate region graphs from visibility/traversability

data, generate region sequences between current position and goal, and plan

paths down corridors of free space while avoiding obstacles. Our current Naviga-

tor is specific to following obstacle free roads (corridors) and so path planning

consists of smoothly changing the heading of the vehicle in accordance with the

3-D representation derived from the visual process. This is accomplished by com-

puting cubic arcs as asymptotic paths. Given the current position and orienta-

tion of the vehicle, a cubic arc is derived which begins at the vehicle, slopes in

the direction of vehicle heading, and terminates 13 meters along the road center-

line, in the direction of the centerline. This cubic arc is used as a path for the

next 3 meters (about one vehicle length) at which point a new cubic arc is

derived which terminates another 13 meters ahead. That is, the vehicle is always

steered towards a point which is 13 meters ahead of it, along the centerline.

Thus, the vehicle's path will be asymptotic to the road centerline. (If the road

has more than one lane, we displace the centerline to the middle of a lane.) This

yields paths with smooth changes in heading. When obstacles are introduced

onto the road, we must adjust the termination point of a cubic arc so that no

part of the arc intersects an obstacle nor crosses the road boundary.

In order to support the focus of attention mechanism in the feed-forward

mode, the Navigator must track vehicle position through the 3-D representation
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in response to dead reckoning data provided by the Pilot. This information is

made available to the Vision Executive at its request.

3.2.0. Pilot

This module converts the cubic arcs obtained from the Navigator into a

sequence of conventional steering commands used over the next 3 meters. They

decompose a curved path into a set of short, straight line segments. These

motion commands must then interface to the motor controls of the vehicle. (In

our case, the interface is to the motion control software of a robot arm, as

described in the next section.) The Pilot is also responsible for sending dead

reckoning data from the vehicle to the Navigator. The Pilot converts the raw

data into measured travel, and returns this information to the Navigator several

times per second.

3.2.10. Planner

Our current Planner is quite simple; it merely specifies a distance goal, e.g.

move to the point 60 meters further down the road. A mature planning module

could have arbitrary complexity, specifying high level navigation goals, assigning

priorities to these goals, monitoring progress as a function of time and construct-

ing contingency plans. It would also be responsible for allocating computational

resources throughout the system. However, until the vehicle can exhibit a variety

of behaviors, it seems rather premature to concentrate on issues of high level

planning.
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4. Technical Reports

Three technical reports were produced during the first year of the contract.

1) Image Processing for Visual Navigation of Roadways by Jacequeline Le

Moigne, Allen M. Waxman, Babu Srinivasan and Matti Pietikainen, Univer-

sity of Maryland Center for Automation Research Technical Report No. 138,

July 1985.

2) A Visual Navigation System for Autonomous Land Vehicles by Allen M.

Waxman, Jacqueline Le Moigne, Larry S. Davis, Eli Liang and Tharakesh

Siddalingaiah, University of Maryland Center for Automation Research

Technical Report No. 139, July 1985.

3) Road Boundary Detection for Autonomous Vehicle Navigation by Larry S.

Davis and Todd Kushner, University of Maryland Center for Automation

Research Technical Report No. 140, July 1985.
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